4.5

0.

Dimension for subspaces of column vectors.

Assumed background.

e Whatever has been covered in Topics 1-3, especially:—

* 1.5 Linear combinations.
* 1.6 Linear dependence and linear independence.

e 4.1 Sets of matrices and sets of vectors.
o 4.2 Set equality (for sets of matrices and sets of vectors).
e 4.3 Subspaces of column vectors.

e 4.4 Basis for subspaces of column vectors.

Abstract. We introduce:—

e the dimension for an arbitrary subspace of R™,

o the Replacement Theorem and its consequences.

In the appendiz, we provide the proofs of the fundamental results about basis and dimension for subspaces of R?
that we are going to state.

. Questions about the notion of basis for a general subspace of R".

We can (and should) ask several questions about the notion of basis for a general subspace, say, V, of R"™ over the
reals.

Question (1).
Is it guaranteed that V has a basis over the reals?

Answer.

(a) When V = R”, the answer is yes. But what if V # R™?
(b) If V is itself the span of some k linearly independent column vectors, say, uy, ua,- -+ ,ug, over the reals, then,
by definition, these k£ column vectors uj, us,- - - ,ug, certainly constitute a basis for V over R.
But what if V is not already known to be the span of some linearly independent column vectors over the reals?
Question (2). IfV has a basis over the reals, how many bases does V have?

Answer.
When V = R”, the answer is definitely no.

This suggests the answer to this question is many more than one, when V is not the zero subspace of R™.

In fact, if uy, ug, - - - , u, constitute a basis of V over the reals, for each choice of non-zero real numbers oy, ag, - - - , o,
we have a distinct basis of V over the reals, given by ajuy, agug, -+, apu,.

. In view of the answer to Question (2), we should ask these further questions:—

Question (3).

Is is possible to compare various bases of V over the reals? How can the comparison be done? Can it be done
systematically?

Question (4).
Is there anything common amongst all bases of the same V over the reals?

The ‘Change-of-basis’ Theorem has provided a partial answer to Question (3). But it is relevant only under the
assumption that various bases for V have the same number of column vectors. Now this becomes a matter of concern
of Question (4).

We provide the answers to these questions in the theoretical results below.

3. We start by recalling two things about linear independence for column vectors with n real entries:—

(a) Non+ 1 or more column vectors with n real entries are linearly independent over the reals.

(b) By definition of the notion of basis, every basis for a subspace of R"™ over the reals is necessarily made up of
linearly independent column vectors with n real entries.



Combining these two observations, we have the result below. In plain words, this says that the ‘size’ of a basis for
a subspace of R™ ‘cannot be too large’.

Theorem (1). (Upper bound of number of column vectors in a basis for a subspace of R"” over the

reals.) A J:C’»S}? Oﬁ R ks h

Ever is for any subspace of R™ over the reals h n_column vectors. Clumn eckar§

4. Theorem (1) can be much sharpened to give the key theoretical result below. This result provides an answer to
Question (1).
Theorem (2). (Existence of basis for an arbitrary non-zero subspace of R" over the reals.)

Suppose V is a non-zero subspace of R™ over the reals. Then lthere isia basis for V over the reals which consists of

'\}:\: ] é)( \| at least one and at most ncolumn vectors xgth n rea] entries.

Remark. The proof of Theorem (2) is provﬂv\ d i 1n the appendiz.
Further remark. Theorem (2) does not have any practical application within the scope of this course. Its only
purpose is to guarantee that we can talk about basis for an arbitrary subspace of R™.
5. We now provide some kind of answer to Question (4).
Theorem (3). (Uniqueness of ‘size’ of various bases of the same subspace of R" over the reals.)
Any two bases for a subspace of R™ over the reals have the same number of column vectors.
Remark. The proof of Theorem (3) is provided in the appendiz.

Further remark. The argument will heavily rely on a theoretical device, known as the Replacement Theorem,
whose statement will be introduced later. The Replacement Theorem can be regarded as the ultimate answer to
Question (3).

6. In the light of the validity of Theorem (2) and Theorem (3), it makes sense to introduce the notion of dimension of
subspace below. In many situation it is what we really need from the consideration of subspaces.
Definition. (Dimension of a subspace of R" over the reals.)

Let V be a subspace of R™ over the reals.

(1) (Suppose V is the zero subspace of R™ over the reals.) We declare the dimension of {0, } over R is 0, and write
dimg({0,}) = 0.

(2) Suppose V is not the zero subspace of R™ over the reals.
We call the number of column vectors belonging to a basis for V the dimension of V over R.
When such a number is p, we write dimg(V') = p, and we refer to V as a p-dimensional subspace of R" over
the reals.

7. Comments on the definition for the notion of dimension.

(a) According to Theorem (2), it makes sense to talk about the number of column vectors belonging to a basis for

VY over R, because such a basis exists.

(b) According to Theorem (3), it makes sense to refer to such a number as something determined by V (and

introduce the notation dimg()V)), because the numbers of various bases for the same V over the reals are the
same. oL (‘LW\ liL(\/) < n
(¢) According to Theorem (2) again, we know that dirr@()/) is an integer between 0 and n.

(d) We may simplify the notation dimg (V) as dim(V), with the understanding that only subspaces over the reals
are involved in the discussion.

8. Immediately following from the definitions for the notions of basis and dimension is the result below about span.

Theorem (4).

Let ui,ug,--- ,u, € R™.
Suppose uy,ug, - - - ,u, are linearly independent over the reals.
Then:—

(a) the inequality p < n holds, and

(b) Span({u;,us,---,u,}) is a p-dimensional subspace of R over the reals, with a basis over the reals constituted
‘Kyulau27 s, Up.
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— O O
9. Example (1). (Easy illustration of Theorem (4).) [ ) o
O
Consider the standard base e{™ el ... el for R". ¢ L
— {
For each ¢ = 1,2, -- ,n, the ¢ column vectors e1 (") o eq ) constitute a basis for the subspace of R™ which is
/’_ﬂ F\-d O
Span({egn), eén), . ,e((]")}). 0

—_

This subspace of R” is of dimension q. ¢ <« OL

@ Example (2). (Illustration on Theorem (4).)

2 0
@ Let u; = h], u; = l—lll , and W = Span({uy, uz}).

We can verify that u;, uy are linearly independent over the reals.
Therefore uq, us constitute a basis for YW over the reals.

Hence dim(W) = 2.

1 0
Let u; = % ,Ug = % , and W = Span({u,us}).
1 3

We can verify that u;, uy are linearly independent over the reals.
Therefore uy, us constitute a basis for YW over the reals.
Hence dim(W) = 2.

2 0 0
2 0 -2

Let u; = % , Uy = (1) ,us= | 0 |, and W = Span({uy, uz,us}).
1 1 1

We can verify that up, us, usg are linearly independent over the reals.
Therefore uy, us, us constitute a basis for YW over the reals.
Hence dim(W) = 3.

11. Example (3). (Further illustration on Theorem (4), through null spaces of matrices.)

(a)

(b)

1 -1 2 -7 -23
3 —2 6 —18 —55
Let A= 4y 3 7 23 73
1 2 0 7 33

We proceed to solve the homogeneous system LS(A, 04), by applying row operations to obtain a reduced
row-echelon form which is row-equivalent to A:—

1 0 0 0 1
01 0 0 2
A —— 5 N A' — 00 10 3 ,‘
0 0 0 1 4 Y
o _ox=ul|2 |,
It follows that the null space N'(A) of A is given by S ( A, D ¢l T (
N(A) = Span ({u1}), NEIR K(
in which u; is the non-zero column vector (which is read off from A’ and) which is given by
-1
-2
u; = -3
—4
1
.

Note that uy is linearly independent. Then u; constitutes a basis for N'(A) over the reals.

Therefore(MMA/)L:i. &: \N\'\&}C S the Yok w‘g {f\

1 3 1 -2 1
1 3 2 -3 -3
Let A= o9 § 1 -2 10

-1 -3 -3 1 -5
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We proceed to solve the homogeneous system L£S(A, 04), by applying row operations to obtain a reduced
row-echelon form which is row-equivalent to A:—

1 3009
, oo 100

A ——A=10001 4
0000 0

e

It follows that the null space N(A) of A is given by

N(A) =Span ({ui.,ur}),

in which uj, uy are the linearly independent column vectors (which are read off from A’ and) which are given

by
1 0
u = 0 s U = 0
0 —4
0 1 {}
Then uy, us constitute a basis for N'(A) over the reals. . L M’ -
Therefore dim(N(4)) = 2. Q W}\M & the  Yom< o% A 1 Yl (A ) dtn 7\/\ ;

0O 0 2 3 5 —7
1 02 1 10 -2
() Let A=| o T4 1 3 2 1

3 -6 -1 5 4 0
We proceed to solve the homogeneous system LS(A, 04), by applying row operations to obtain a reduced
row-echelon form which is row-equivalent to A:—

b
=
Il
[N enNanl o
|
OOO[\D
SO O
OO O
OO
|
—_

It follows that the null space N'(A) of A is given by
N(A) =Span ({u;,us,u3}),

in which uy,up, us are the linearly independent column vectors (which are read off from A’ and) which are

given by
2 0 -1
1 0 0
0 -1 2
u; = 'HE Uz = —1 |> us = 1
0 1 0
0 0 1

Then u;, us, uz constitute a basis for A/(A) over the reals.
Therefore dim(N(4)) = 3.

12. A special (and extreme) case in Example (1) deserves to be singled out and stated as a theorem.
Theorem (5).
R™ is an p~dimensional gubspace of R™ over the reals.

Proof of Theorem (5).

constitute a basis for R™ over the reals.

The n column vectors e ,
e ——
13. We can sharpen the result much more:—

Theorem (6).

() oM ... o)

) n
Vo Sawapas 4 VE R
+hen him V) << TL

Remark. The proof of this result is given in the appendiz. The argument relies on the Replacement Theorem,

to be introduced immediately. é

Let W be a subspace of R™ over the reals. Let p,q be positive integers.

R™ is the only n-dimensional subspace of R"™ over the reals.

_—

14. Theorem (7). (Replacement Theorem.) —)

Let uj,ug, -+ ,up,thtg,"' ,tq ew.
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15.

16.

17.

<
Suppose t1,ts,- - ,t, constitute a basis for W over the reals. S })Mﬂl ? M { } — W

Suppose uy,uy, - - - ,u, are linearly independent over the reals.

Then:— N ThW\ |
(a) the inequality p < q holds, and
- ——

(b) ui,ug,--- ,u,, and some g —p column vectors amongst\ts, ta, - - - , t, together, constitute a basis of W over the
b e A4

reals.

We state two theoretical results which follows immediately from the Replacement Theorem. Their proofs are
provided in the appendiz.

The first of them is a generalization of the result below that says:—

any p+ 1 or more column vectors belonging to RP definitely linearly dependent over the reals.

e WA the foleudny  STwdSmedd
Theorem (8). (Corollary (1) to Theorem (7).) &) C‘)WPW "~ t I(Q >y

Let V be a q-dimensional subspace of R™ over the reals. A,, ((9/5/ - gk p< d( , @’h”ﬁ\
The statements below hold:— . '
LS(A4.0) hos nendhvial Solbh?nS
(a) Let vy,va,---,vy € V. Suppose vi,va,---,vy are linearly independent over the reals.

ﬁ/ Then ¢ < q. (lw Tkmf, U = /U{n %m)

(b) For each positive integer k, any q + k column vectors belonging to V are linearly dependent over the reals.
Remark. In plain words, each part of Theorem (8) says that:—

any q + 1 or more column vectors belonging to a g-dimensional subspace of R™ over the reals are definitely
linearly dependent over the reals.
Here comes another result that follows from the Replacement Theorem. "
Theorem (9). (Corollary (2) to Theorem (7).) \) q‘t\ﬁw aysts < hags 2 -\{
1

Let W be a g-dimensional subspace of R™ over the reals.
Let ug,us, - ,u, € W. < A\l

Suppose uy,uy, - - - ,u, are linearly independent over the reals. @ %&d et THesrem.
Then:— C Lk \L = U\J
\,11.}7

P i wt i

b) there is some basis for VW over real constituted by uy,us,--- ,u,, and some ¢ — p column vectors belonging to
P g8
W. —

(a) the inequality p < q holds, and

Remark. This is how part (b) of the conclusion is very often interpreted:—

Given any collection of p linearly independent column vectors in a q-dimensional subspace W of R™ over the
reals, it is possible to ‘extend’ thi ;- is for VW over the reals.

The example below partially illustrates the content of the Replacement Theorem, and also suggests how the ‘algebra’
involved in its argument is done. Viewed in another way, this example also illustrates the idea in Theorem (9).

Example (4). (Illustration on the content of the Replacement Theorem, and the idea in Theorem
(9))

Regard R® as a subspace of R® itself over the reals.

We have the standard base for [R%, constituted by e§8), egs), eés), 64(18), egs), eés), e(78)7 e’

(®

For simplicity, we write ;" as e; for each j.

Let u; =e; + ey, up=ex+e3, uz=e; +e3, us=e;+es Us = —e;+e5 U =e; +e+e3+es+es+ eg.
— — — — —

(a) Note that uy, ug, us, ug, us, ug are linearly independent over R* (Fill in the detail as exercise.)

(b) At a theoretical level, we know from the Replacement Theorem that uj,us, us, ug, us, ug, and 2 appropriate
— ———

cgm/rnimd@m amongst Wogether, constitute a basis for R® over the reals.

(c) Another way of saying the same thing (but with emphasis shifted) is that we may ‘extend’ u;, uo. u3, ug, us, ug
to give a basis for R™ over the reals, by incorporating 2 column vectors from amongst ey, e, €3, €4, €5, €g, €7, €5.
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(d) In practice, for the selection to be done, we need to do some algebra about linear combinations.

The strategy is to obtain a desired basis for R® from the original basis R® by constructing various bases for R®
with more and more uy’s, and fewer and fewer e;’s. At each step, we replace one of the remaining e;’s in the
‘intermediate’ basis with an appropriate uy which is yet to be incorporated.

i.

i.

iii.

iv.

vi.

By definition u; = e; +e3. —— (%1) u, Q>%
Then e; = u; —ep. —— (%) < e Spa"/‘@_ ? I

Using the equalities (x1), (x}), we deduce that uj, e, e3,eq4, €5, €q, €7, €3 constit&\} basis for R® over the
reals.

By definition us = ey + e3. —— (%2) — S 31/[,, W, € k(
Then ey = u; —e3. —— (x5) e, (= SPC‘MH\ 2 s, @3 (l 0, . 4 Pc”"

Using the equalities (x2), (x5), we deduce that uy, ug, es, e4, €5, €5, €7, €g constitute a basis for R8 over the
reals.

By definition us = e + es. i

Note that e; = u; — ey = u; — (uy — e3) = u; — uz + e3. we" -~ &y

Therefore uz = u; — uz + 2e3. —— (*2) - g
1 1 1 . < Sp-w Tu, .

Then es = —-u; + —uy + -uz. —— (%5) €z 6505&? U U3 }

Using the equalities (x3), (x5), we deduce that uy, us, us, ey, es, eg, €7, e constitute a basis for R® over the
reals.

By definition uy = e4 + €5. —— (%4)

Then e4 = uy — e5. —— (¥})

Using the equalities (x4), (¥}), we deduce that uy, ug, us, uy, es, €, €7, eg constitute a basis for R® over the
reals.

By definition us = —e4 + es.

Note that e4 = uy — es.

Therefore us = —uy + 2es. (*5)

Then e; = %uél + %u;, — (%})

Using the equalities (x5), (x5), we deduce that u;, us, uz, uy, us, eg, €7, eg constitute a basis for R® over the
reals.
By definition ug = e; + e + es +e4 + €5 + eg.

1 1 1
After some methodical application (or some clever observation), we deduce ug = §u1 + §u2 + §u3 +uy+es.

() e g .y
a 6
o pragle &) € fulic <l
Then eg = —=u; — —Uy — JUs W +ug. — (xg) = (l
A L ke B — =
Using the equalities (xg), (*5), we deduce that uy, us, us, uy, us, ug, €7, eg constitute a basis for @over the
reals. -
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